
Departement IT en Digitale Innovatie

Enabling the Distributed Development of Blazor-Based Web Applications
Using a Microfrontend Architecture

Dante De Ruwe

Scriptie voorgedragen tot het bekomen van de graad van
professionele bachelor in de toegepaste informatica

Promotor:
Benjamin Vertonghen

Co-promotor:
Dr. Florian Rappl

Instelling: smapiot GmbH

Academiejaar: 2020-2021

Derde examenperiode

Department IT and Digital Innovation

Enabling the Distributed Development of Blazor-Based Web Applications
Using a Microfrontend Architecture

Dante De Ruwe

Thesis submitted in partial fulfilment of the requirements for the degree of
professional bachelor in Applied Information Technology

Promotor:
Benjamin Vertonghen

Co-promotor:
Dr. Florian Rappl

Institution: smapiot GmbH

Academic year: 2020-2021

Third examination period

Preface

This bachelor’s thesis was written as a part of the final steps of obtaining my professional
bachelor’s degree in Applied Information Technology at Ghent University of Applied
Sciences and Arts (HOGENT). During the past years, I discovered my passion for software
architecture and development, mainly focussed on .NET-related technologies.

My introduction into the wonderful world of microfrontends started when applying for
an international internship in the summer of 2020. I came into contact with the company
“smapiot” and one of their solution architects, Florian Rappl. He introduced the concept of
the microfrontend architecture to me, mentored me through my internship entirely focussed
around that architecture, and provided me with the inspiration for this thesis.
Microfrontends were right outside of my comfort zone. I was most familiar with backend
development and architecture, and had almost no idea there was a need for distributed
architectures in the frontend space to begin with. The international internship really pulled
me deeper into the topic, and provided me with hands-on experience.

I want to sincerely thank Florian for his mentorship during the internship, for being the
co-promotor of this thesis, and for providing me with useful guidance and sources.

Many thanks also to Benjamin Vertonghen for being the promotor of this thesis. He
provided me with useful feedback and was available for my questions even during the
vacation period.

Next, I want to take this opportunity to thank my family – with in particular my mother,
father, sister, and stepfather – for mentally, practically and financially supporting me
throughout my entire study career. Without them, I would not be where I am today.

Finally, a big “thank you” to my girlfriend for her continued love and support, particularly
throughout the COVID-19 pandemic, the 3-month-long internship abroad, and the process
of writing this thesis.

Samenvatting

Door de introductie van de WebAssembly (WASM) standaard is een hele nieuwe waaier
aan webapplicaties mogelijk. Binnen het .NET ecosysteem is Blazor het meest gebruikte
framework om WebAssembly applicaties te genereren. Dit framework maakt het mogelijk
om interactieve user interfaces te bouwen, en hierbij gebruik te maken van C# in de
plaats van JavaScript. Een uitdaging die bij deze manier van werken komt kijken, is dat
er geen rechtstreekse manier is om een gedistribueerde ontwikkeling mogelijk te maken.
Er kan gebruik gemaakt worden van onafhankelijke component libraries, maar dan moet
de uiteindelijke web applicatie kennis hebben van deze libraries bij de integratie. Een
microfrontend architectuur kan deze relatie potentieel omkeren.

Deze bachelorproef onderzoekt wat noodzakelijk is om Blazor applicaties gedistribueerd
en op grote schaal te ontwikkelen. Hoewel de voordelen van de microfrontend architectuur
grotendeels overlappen met die van andere gedistribueerde architecturen zoals de micro-
service architectuur, heeft een theoretisch onderzoek de uitdagingen die eigen zijn aan
de microfrontend architectuur kunnen blootleggen. Een proof-of-concept applicatie werd
daarna gecreëerd rond een specifieke business case, waarbij onder andere gefocust werd op
zgn. progressive enhancement. Om dit te bereiken werd een universele compositiestrategie
gehanteerd. Een herbruikbare framework library werd ook ontwikkeld, die voor een Blazor
applicatie enkele nuttige componenten kan bieden om dynamisch zgn. fragments weer
te geven en client-side routing mogelijk te maken. Ook werd hierbij gedacht aan de
mogelijkheid om te debuggen.

Aangezien het gebruik van Blazor en de microfrontend architectuur momenteel in de lift
zit, kan deze bachelorproef een startpunt zijn voor verder onderzoek, of een nuttige bron
van informatie voor .NET ontwikkelbedrijven en -teams die op grote schaal full-stack
webapplicaties ontwikkelen.

Abstract

With the WebAssembly (WASM) standard a new set of web applications have been made
possible. Within the .NET ecosystem, the most popular solution for generating WebAssem-
bly applications is called Blazor. This framework allows building interactive web UIs
using C# instead of JavaScript. One challenge in this approach is that there is no direct
way of enabling distributed development. While component libraries can be created inde-
pendently, knowledge in the main application would be required for integration. Using a
microfrontend architecture this relationship could be inversed.

This thesis investigates what is needed to empower the distributed development of large-
scale Blazor-based web applications. While the advantages of the microfrontend archi-
tecture pattern are closely related to those of other distributed architectures such as the
microservice architecture, a theoretical study uncovered that microfrontends have their own
specific set of challenges that need to be overcome. A proof-of-concept solution focussed
around a realistic business case was constructed, focussing on progressive enhancement.
To achieve this, a universal composition strategy was used. A reusable framework library
was created that can provide any Blazor application with components to achieve dynamic
fragment rendering and client-side routing, keeping also the debugging experience in mind.

As the adoption of the Blazor framework and the microfrontend architecture pattern
will mature, this thesis could be a valuable starting point for further research, and a
valuable resource for .NET-focussed development teams creating large-scale full-stack
web applications.

Contents

1 Introduction . 19

1.1 Problem Statement 20
1.2 Research question 20
1.3 Research objective 20
1.4 Structure of this bachelor thesis 21

2 State of the art . 23

2.1 Distributed development 23
2.1.1 Benefits . 24
2.1.2 Challenges . 24
2.1.3 The role of the architecture in enabling distributed development 24

2.2 The evolution from monolithic to distributed architectures 25
2.2.1 Monolithic architecture . 25
2.2.2 The split-stack development model . 26
2.2.3 Microservices . 28

2.3 Microfrontends 32
2.3.1 What are microfrontends? . 32
2.3.2 How do microfrontends enable distributed development? 33
2.3.3 Common implementation patterns . 34
2.3.4 Usage of microfrontends . 37
2.3.5 Benefits of microfrontends . 37
2.3.6 Downsides and challenges of microfrontends . 38

2.4 Blazor WebAssembly 38
2.4.1 Current state of Blazor and microfrontends . 39

3 Methodology . 41

3.1 Theoretical study 41
3.2 Proof of concept 42

4 Proof of concept . 43

4.1 Domain 43
4.1.1 Description . 43
4.1.2 Decomposition into microfrontends . 44

4.2 Architecture 44
4.2.1 Composition structure . 44

4.3 Development 45
4.3.1 Preparation . 47
4.3.2 Process and results . 47

5 Discussion . 49

A Proposal . 51

Bibliography . 57

List of Figures

2.1 Two vs three tier architecture . 26
2.2 Microservices . 29
2.3 Backend for frontend pattern . 30
2.4 Microfrontends . 33
2.5 Blazor WebAssembly . 39

4.1 Architecture overview for proof-of-concept solution 45
4.2 Visual overview for proof-of-concept solution 46

Glossary

API
An API or application programming interface describes a set of commands and
protocols for the communication between software systems without having to know
their exact implementation. 14, 27, 28, 39, 48

API gateway
An API gateway accepts API requests from a client, and directs them to the appro-
priate services. Typically it handles a request by invoking multiple microservices
and aggregating the results (NGINX, 2021). 29

application shell
Also called app shell. It serves as a parent application for the integration of mi-
crofrontends (Geers, 2020)(Rappl, 2021). 36, 38, 39, 44, 47, 48, 50

backend
The backend of a software application is the part of a software system that is not
directly accessed by the user, typically responsible for executing business logic and
manipulating data. 3, 19, 27–29, 32, 33, 37

BFF
Backend For Frontend. 29, 30

CDN
A Content Delivery Network, is a distributed network of servers that can efficiently
deliver web content to users (Microsoft, 2018). 36, 48

CLI
Command Line Interface. 47

DI
Dependency injection. 47

14 Glossary

DLL
Dynamic-link library. 48

DOM
Document Object Model, a programming interface for web documents. The DOM
represents the document as nodes and objects; that way, programming languages can
interact with the page (Mozilla, 2021a). 35, 36, 39

endpoint
Describes the point of entry in a communication channel. Relating to APIs, an
endpoint is the location or address where a request can be made to. 27, 28

ESI
Edge-Side Includes. 36

frontend
The frontend of a software application is the design, architecture and programming
that makes the user-facing application function. 3, 19, 20, 26–28, 32, 33, 37, 45

FTS
Follow-the-sun (also called 24-hour development or round-the-clock development)
is a form of GDD in which multiple teams are spread across timezones to ensure
one team is always operational during normal business hours. 24

GDD
Geographically Dispersed Development. See GDD. 23

GDD
Geographically Distributed Development. The practice of managing software de-
velopment projects beyond the traditional bounds of a single building or office
structure where the development staff is singularly located. In a GDD model, the
development staffing may be distributed across town, across a state or provincial
border, or overseas (Yuhong, 2008). 23, 24

GSD
Global Software Development. See GDD. 23

GUI
Graphical user interface. 25, 26

HTTP
The Hypertext transfer protocol is an application-level protocol for distributed, collab-
orative, hypermedia information systems. It is a generic, stateless, request/response
protocol (Fielding et al., 1999). 28, 29, 48

iframe
Inline frame. 35, 37

IL
Intermediate language, also known as MSIL, is a product of compiling high-level
.NET languages into a binary instruction format (Microsoft, 2016). 39

JS interop
Javascript interoperability describes the invocation of a JavaScript code from another
language. 39

Glossary 15

load-balancer
A load enables the optimization of computing resources, reduces latency and in-
creases output and the overall performance of a computing infrastructure, by dis-
tributing and managing the load across several devices (Techopedia, 2012). 28

microfrontend
See microfrontend architecture. 3, 5, 7, 19, 20, 33–38, 40, 43–50

microfrontend architecture
The microfrontend architecture is an architecture style that splits up an application
into distributed modules that are focussed around a specific business capability. Most
of the time these individual modules are managed by autonomous cross-functional
teams (Geers, 2020)(Rappl, 2021). 3, 7, 15, 19–21, 23, 32–35, 37, 38, 41, 43, 49

microservice
A microservice is a cohesive, independent process interacting via messages (Dragoni
et al., 2017). Every microservice is loosely coupled, independently deployable and
organized around a business capability. See also microservice architecture. 5, 15, 20,
29–32, 35, 37

microservice architecture
A microservice architecture is a distributed application where all its modules are
microservices. (Dragoni et al., 2017).See also microservice. 7, 15, 28–33, 37, 38

monolith
A software monolith or monolithic application describes an application that is built
in a single unit, and that produces a single logical executable. This means any
changes that are made to a part of the application require building and deploying a
new version of the application (Fowler & Lewis, 2014) 15, 19, 20, 26–28, 32

monolithic
Built as a monolith. See monolith. 19, 20, 23, 28, 32, 41

MVC
Model-view-controller. A design pattern, commonly used for user interfaces with
the goal of seperating the user interface from the underlying data that represents it
(Leff & Rayfield, 2001). 25, 26

offshoring
The tranfer of a business function to another country, usually to take advantage of
lower labor costs, tax rates, or for legal reasons. 24

outsourcing
The transfer of a business function to a third-party service provider. 23

PDB
Program database. 40, 48

PoC
Proof of concept. 43–46, 48

progressive enhancement
A software design philosophy that emphasises the delivery of simple content and ba-
sic funtionality to as many users as possible, while providing the best user experience
only to the users of capable systems and browsers. 5, 7, 20, 35, 37, 43

16 Glossary

REST
Representational state transfer is an architectural style for distributed hypermedia
systems. When a RESTful API is called, a transfer between the server and the client
will occur that represents the state of the requested resource (Avraham, 2017). first
16, 29

RESTful
See REST. 27, 48

RPC
A Remote procedure call, also known as a subroutine call or a function call, is a
communication mechanism for client-server applications. 29

SEO
Search engine optimization. 35–37, 44

SOA
Service-oriented architecture defines a way to make software components reusable
and interoperable via service interfaces. Each service in an SOA embodies the code
and data required to execute a business function (Education, 2021). 28

SOAP
Simple object access protocol, a method of transferring messages formatted in XML
over the Internet. 28

SPA
Single-page application. 36

SSI
Server-Side Includes. 35, 36

SSO
Single sign-on. 29

transpiling
Taking source code written in one language and transforming into another language
that has a similar level of abstraction (high-level to high-level or low-level to low-
level) (Fenton, 2012). 38

UI
User interface. 7, 19, 38, 49

URL
Uniform Resource Locator. The address of a specific webpage or file on the internet.
35

W3C
The World Wide Web Consortium is an international community where Member or-
ganizations, a full-time staff, and the public work together to develop Web standards
(W3.org, 2021). 38

WebAssembly
WebAssembly (abbreviated Wasm) is a binary instruction format for a stack-based
virtual machine. Wasm is designed as a portable compilation target for program-
ming languages, enabling deployment on the web for client and server applications
(Webassembly.org, 2021). 5, 7, 19–21, 23, 38–41, 47, 49

Glossary 17

XML
Extensible markup language is a markup language for representing structured infor-
mation that is both human and machine-readable. 28, 36

1. Introduction

Historically, nearly all applications were developed using a monolithic architecture: a
single-tier architecture, where the user interface (UI), business logic and data storage
are all managed in a single all-in-one solution. Nowadays, developer teams have mostly
adopted split-stack development, where the UI is handled in the so-called “frontend” and
the business and data logic is dealt with by a “backend” system. This reduced coupling
enables specialized teams to develop each aspect individually, independently and therefore
simultaneously (Dunkley, 2016). For the same reasons, microservices started making an
appearance when developers realized that having a single backend service could also be
considered a monolithic approach (Fowler & Lewis, 2014).

In very recent years, the term “microfrontends” (or “micro frontends”), was introduced to
describe the split of the frontend monolith into independently deployable and maintainable
pieces. The resulting web applications are often described as “modular distributed web
applications”, and allow autonomous cross-functional teams to work on them.

This “vertical” split is especially beneficial for large-scale projects, where the division
of developers in autonomous teams is quite common. However, enabling the distributed
development of these microfrontends is not a trivial undertaking, and naturally has its
challenges.

This thesis aims to be an application of the microfrontend architecture, to enable distributed
development of large-scale web applications. More specifically, this thesis will focus on
the Blazor1 WebAssembly2 framework.

1 https://blazor.net
2 https://webassembly.org

https://blazor.net
https://webassembly.org

20 Chapter 1. Introduction

1.1 Problem Statement

The introduction of the microservice and microfrontend architecture patterns gives rise to
technical and organizational challenges that were previously less commonly encountered
in the world of monolithic development models. However, there are significant benefits
too if development teams are willing to adapt to these methodologies.

The research in this thesis can indicate whether development companies and teams can
benefit from a move towards one of these distributed architectures, or if the benefits don’t
outweigh the difficulty of the changes.

Furthermore, while technology independence, for example, can be categorized as a benefit
of said architecture patterns, this does not automatically ensure that every technology is
well suited.

This thesis focusses on the specific characteristics of the Blazor WebAssembly frontend
framework in relation to microfrontends. Because of the limited maturity of Blazor and
the application of the microfrontend architecture pattern within this tech stack, this thesis
could be a valuable resource to companies and development teams that have a focus on
Blazor development or .NET technologies in general.

1.2 Research question

To be able to achieve the research objectives, the following research questions were
formulated:

RQ1 What is needed to be able to independently develop and deploy microfrontends using
Blazor WebAssembly?

RQ2 How to render Blazor-based microfrontends with the proper isolation, performance
and with progressive enhancement in mind?

RQ3 What are the challenges that need to be overcome, and how would one do so?
RQ4 How can development teams benefit from the transformation of their Blazor monolith

into a microfrontend solution?

1.3 Research objective

• A comparative study providing an overview of the microfrontend architecture and
the key differences with a monolithic architecture.

• A descriptive study outlining implementation patterns, challenges and best practices
of the microfrontend architecture pattern in a Blazor WebAssembly project.

• A descriptive study outlining the benefits and drawbacks of using the microfrontend
architecture with the goal of enabling distributed development in a company context.

With the gained insight of the literature and the theoretical study, a proof-of-concept
solution around a realistic business case will be created to investigate the feasibility and

1.4 Structure of this bachelor thesis 21

demonstrate the practical application of the microfrontend architecture pattern in a Blazor
WebAssembly project.

1.4 Structure of this bachelor thesis

De rest of this bachelor thesis is outlined as follows:

In Chapter 2 an overview of the state of the art within the research domain is provided.
This overview is based on a literature study.

In Chapter 3 the methodology is clarified and the relevant research techniques are discussed
to be able to formulate an answer to the research questions.

In Chapter 4 a proof-of-concept solution will be created to be able to answer to the research
objective of investigating the feasibility and demonstrating the practical application of the
gained insights from the theoretical studies.

Finally, in Chapter 5, the conclusions about the findings are described and interpreted.
Additionally, the significance of the results are outlined, which could provide incentive for
further research.

2. State of the art

In this chapter, the research domain will be explored in its current state. This will allow
for further insight into what distributed development is and why it is beneficial. The
evolution of software architectures from monolithic to distributed will also be laid out,
which introduces the concept of the microfrontend architecture. To conclude, a deep-dive
into Blazor WebAssembly will be presented.

2.1 Distributed development

In a technology landscape that has long been shifting to meet the current trends of economic
globalization, software development has evolved from being mostly concentrated at a single
location, to being geographically distributed around the globe.

According to Yuhong (2008), the terms Geographically Distributed Development (GDD),
Geographically Dispersed Development (GDD) and Global Software Development (GSD)
are mostly used to refer to the same distributed development model. In the remainder of
this thesis, the term Geographically Distributed Development (GDD) will be used mainly
when emphasis is required on the geographical aspect of the distributed development
model.

The application of GDD can be done in many distinct ways. One way is in the form of out-
sourcing agreements, often with countries where employment costs are more economically
beneficial.

Another way, is the separation of a company into different local divisions or departments
in different cities. This envelops both large multinational companies that operate around
the globe, or more nationally-focused companies that have different branches in different

24 Chapter 2. State of the art

cities. (Kiel, 2003) This also includes the practice of offshoring, which tends to have the
same motivations as outsourcing, but keeps control in the hands of the business, and does
not involve a third party (Oshri et al., 2015).

2.1.1 Benefits

Companies often have a plethora of different business reasons to distribute the development,
maintenance and management of software.

• Financial benefit (labor costs, taxation, ...)
• Market insight: local teams have more insight into local trends
• Talent availability: a larger pool of skilled developers is available, potentially even

with different specializations in different locations. (Conchúir et al., 2009)
• Faster time-to-market: because development can be distributed across multiple

timezones, a follow-the-sun (FTS) workflow could potentially increase development
speed drastically1 (Carmel et al., 2010).

2.1.2 Challenges

While the aforementioned benefits of GDD appear very useful in theory, on the practical
side, there are of course some challenges to this approach. For example, according to
Šmite et al. (2010), implementing an agile methodology within a distributed software
development model is not straightforward; and the characteristics of agile and distributed
development could be seen as polar opposites.

But the idiomatic “elephant in the room” is communication. In projects where teams are
located together, communication can be rather informal, which helps team members more
rapidly gain project and technical knowledge, as well as knowledge of the more human
aspects of their coworkers, such as working style and expertise. According to Sengupta et al.
(2006), frequency of communication has an inverse relationship to physical separation of
team-members, and in multi-site environments, the decrease in communication frequency
is so sharp, that informal communication is nearly nonexistent. Pairing this with cultural
and timezone differences, makes all communication very difficult when practicing GDD.

2.1.3 The role of the architecture in enabling distributed development

According to Yuhong (2008), in a GDD environment, establishing and maintaining a
common software and/or solution architecture that can support a distributed development
model, is key for the success and sustainability of the software project. Among other
architectures, she describes a module-based project architecture, where self-contained
software components are developed independently. This way, teams could develop these
modules simultaneously, without a large interdependence on other modules. This, however,

1 According to Conchúir et al. (2009), FTS workflow is however practically almost inachievable, and
in practice, many companies even make sure the time zones overlap as much as possible, to reach better
inter-team communication.

2.2 The evolution from monolithic to distributed architectures 25

requires strong decoupling of the software modules.

2.2 The evolution from monolithic to distributed architectures

The development of applications for the web has seen some dramatic shifts over the
years. Apart from new technologies, protocols, and standards, the way web applications
are structured has undergone some evolutions as well. “Software architecture” not only
outlines the pure structure of the application but also defines the responsibility of all the
pieces of the application, and how these pieces ought to interact with each other (Fedorov
et al., 1998).

2.2.1 Monolithic architecture

Historically, one of the earliest architectures for implementing web applications was
the client-server model. The service provider or server can share its resources with
service users called clients. According to Reese and Oram (2000), at the time, most web
applications were simple two-tier client-server applications. The web browser on the
client-side retrieves data and files from the data store at the webserver side, without much
data interpretation or manipulation. The upcoming increase of the computing power of
hardware, made it possible to execute some data processing on the client-side, using for
example technologies like Java.

Although two-tier client-server architectures were quick to set up and had robust tooling, a
pretty significant downside got introduced: these so-called fat clients were now not only
concerned with the task of presenting data to the user, but are also bloated with business
logic and data processing. Conversely, any change in business rules would also require
every client to adapt to this change. (Gallaugher & Ramanathan, 1996).

A three-tier architecture was conceptualized in an attempt to overcome the downsides
of the two-tier approach. The idea sounds not very groundbreaking: just introduce the
handling of business logic on the server-side, rather than on the client. This results in the
following tiers (Aarsten et al., 1996):

• The client tier (also known as the presentation tier), which contains the graphical
user interface (GUI)

• The application tier (also known as the business tier or logic tier), i.e. the application
servers that contain objects representing business entities and domain logic.

• The data(base) tier that handles the storage of domain objects and data.

These architectures are compared in Figure 2.1.

With the introduction of this physical separation, the next challenge was the structure of
the software’s code.

Over an extensive period, applications built on top of the client-server model extensively
used the model-view-controller (MVC) pattern (Pavlenko et al., 2020). Like the name
suggests, this pattern describes 3 parts, that are used as conceptual and architectural

26 Chapter 2. State of the art

Figure 2.1: A diagram showing the difference between a two-tier (left) and three-tier (right) architecture.
The two-tier architecture communicates to the data store without an intermediary application server, unlike
the three-tier architecture.

separations in the software. The business logic of the application is encapsulated in the
model, the presentation logic is the responsibility of the view, and the controllers handle
the user actions in the views, and connect these actions to the appropriate models and
updated views.

However, according to Leff and Rayfield (2001), implementation of the MVC pattern for
web applications in a client-server environment, brings up the question of partitioning
between servers and clients. Instinctively it is clear that the views belong to the client
and the models belong to the server, but for the controllers, this separation is not so clear.
Assigning the controllers to the client-side would result in a fat client again, while assigning
them to the server-side (the thin client approach) would often mean too many round-trips
to the server must be performed on every request. In practice, the workaround for this
partitioning is a dual MVC approach, which partitions the controllers between the client
and the server.

While the MVC architecture pattern can give developers a cleaner seperation of concerns
in their code, it still produces a tightly coupled solution. Any change would still mean the
entire code would have to be rebuilt and redeployed (Fowler & Lewis, 2014). This signifi-
cantly reduces development speed, as well as agility. Monoliths can also be considered a
“single point of failure”: whenever one part of the software is malfunctioning, the whole
system is crippled.

2.2.2 The split-stack development model

In more recent times, developer teams started to adopt split-stack development, where
the GUI is handled in the so-called “frontend” and the business and data logic are dealt

2.2 The evolution from monolithic to distributed architectures 27

with by a “backend” system. The communication between these two parts can be carried
out in multiple ways, but one of the most common ways is via a (RESTful) application
programming interface (API).

Decoupling the frontend presentation logic from the backend business logic introduces
some major benefits: (Dunkley, 2016)

• Multiple clients
As it is not at all concerned with presentation logic, the same backend service can
now serve data to multiple different clients (e.g. web, desktop, mobile,...). To support
a new type of client, only presentation logic has to be implemented.

• Specialized teams
The split of frontend and backend allows developers to specialize themselves in
these fields, yielding a deeper knowledge of the selected fields.

• Independent technology stacks
Tying in with the previous point: as teams specialize, they desire and/or require
more specialized technologies. The decoupling of front- and backend removes any
restraints on technology selection between the two areas. For example, frontend
developers can use client-side technologies and frameworks such as Typescript and
React, while backend developers can leverage server-side technologies such as .NET
or Java. This also makes each individual solution more future-proof.

• Simultaneous development
As a result of all outlined benefits above, and the basic concept of decoupling, teams
can work independently, autonomously and therefore simultaneously. For example,
a change to the visual styling of a website, will not require any of the server-side
code to change, and will also not trigger a rebuild.

• Independent deployment and scaling
While a monolith has to be deployed as one big program, teams can now deploy
the frontend and backend solutions according to their needs. Often a static hosting
solution is enough to publish a frontend application, while a backend service might
need some serious infrastructure to remain operational.

Of course, these benefits also come at the cost of some drawbacks.

Firstly, the fact that specialized teams can work on either the frontend and backend
separately and in their own technology stack is a double-edged sword. While the benefits
outlined above stay true; this also means that developers are less flexible to switch teams
in times of developer shortage or approaching deadlines.

Secondly, the contract between the frontend and backend teams is a well documented
API with clearly defined endpoints. For RESTful web API documentation, the OpenAPI
specification2, which is also known as Swagger documentation, provides a standardized
way of defining this contract (Koren & Klamma, 2018). Of course, time and effort needs
to be spent creating robust documentation.

Thirdly, breaking changes have to be avoided at all times. Frontend code might depend

2 https://www.openapis.org/

https://www.openapis.org/

28 Chapter 2. State of the art

on backend endpoints that will get deleted in an upcoming update. This is not acceptable.
Versioning3 provides a way to keep supporting clients that rely on a version of the API
before the breaking change was made.

Lastly, more relevant in the context of this thesis: while dividing the frontend from the
backend does provide benefits; in large, rapidly scaling applications, it simply isn’t enough.
After a frontend-backend split, one does still end up with a both a monolithic backend
and a monolithic frontend.

Shifting the frame of reference to the server-side: the backend monolith still possesses
the same downsides the overall monolith had introduced: one change in the logic and the
entire application has to be rebuilt and redeployed. Also, the issue of scaling still persists:
the server can be updated with more powerful hardware (vertical scaling) or the entire
server-side application can be replicated on different servers, with a load-balancer deciding
how to distribute incoming requests (horizontal scaling). Keyword here is “entire”, as no
specific part of the server-side application can be scaled up independently.

2.2.3 Microservices

Due to an increased business interest in software services, the focus for choosing a software
architectural style and paradigm shifted towards reusability and robustness. According
to Dragoni et al. (2018), This was characterized by the shift to more modular, loosely
coupled applications. The benefits of which were outlined in the previous section. The
service-oriented architecture (SOA) pattern emerged as a step in this direction. Initially,
the goal was to devise software services as a way to interface with larger software systems
(which were often monolithic) via messages, using common messaging protocols (e.g.
HTTP, SOAP or XML).

Taking this approach further, by not necessarily integrating with existing monolithic
applications, but using the service-oriented approach to design, develop and deploy self-
contained and autonomous software services, is what the microservice architecture is
about.4

A visual overview of the microservice architecture is shown in Figure 2.2.

Principles of the microservice architecture

The microservice architecture is built on a few basic principles (Dragoni et al., 2018)
(Dragoni et al., 2017) (Fowler & Lewis, 2014) (Gysels, 2020) (Newman, 2015):

• Small codebases managed by small teams
Codebases are generally smaller in size, at least small enough to be managed by a
small team (this typically means less than 10 people).

3 https://restfulapi.net/versioning/
4 While conceptually derived from SOA, labeling the microservice archi-

tecture as an implementation of SOA is highly debated. Read more on
https://martinfowler.com/articles/microservices#MicroservicesAndSoa.

https://restfulapi.net/versioning/
https://martinfowler.com/articles/microservices#MicroservicesAndSoa

2.2 The evolution from monolithic to distributed architectures 29

Figure 2.2: A diagram showing an example of a microservice architecture with services A through D.

• Focused on a specific business need
Every microservice should be centered around a specific business need or domain,
so that the responsibility of every microservice is clearly defined5, and there is an
alignment between the business capabilities and the software architecture.

• Modular, decoupled and independent
According to Evans (2004), using a software model in a well defined bounded
context, without worrying about the applicability of the model to other contexts, is
key to keeping the context pure and avoiding confusion.
Every microservice should be built, tested and deployed individually and in isolation.

The only form of communication between individual microservices is a uniform communi-
cation mechanism via network calls. In practice, the most commonly used mechanisms are
the request-response mechanism using for example HTTP (with REST or remote procedure
call (RPC)) or the event-based mechanism using an event bus6. The latter mechanism is
generally encouraged as event-based collaboration is highly decoupled (Newman, 2015).

Communication with the “outside world” (i.e. with a client) is usually done using a facade
over all the underlying microservices: usually called an API gateway. This service can
aggregate content gathered from multiple backend calls, and serve it. Whenever this layer
becomes too large, or becomes bloated with logic, a Backend For Frontend (BFF) pattern
can be more useful: this is essentially equivalent to an API gateway per client. This is
shown in Figure 2.3.

As for authentication, according to Newman (2015), a single sign-on (SSO) solution is
often used, whereby the user can authenticate with an identity provider.

5 This can be seen as the application of the Single Responsibility Principle to independent services
6 e.g. Apache Kafka, RabbitMQ, Azure Service Bus, ...

30 Chapter 2. State of the art

Figure 2.3: A diagram showing an example of the BFF pattern with a mobile and a web client.

Benefits of using a microservice architecture

Below some of the major benefits of the microservice architecture are outlined:

• Technology independence
Explanation of this benefit can be directly borrowed from 2.2.2 (“The split-stack
development model”). Choosing the right technologies for the problem is obviously
very beneficial.

• Scalibility and elasticity
Scaling a microservice architecture does not require reduplication of the entire
software system. Every component can be scaled as needed with respect to their
expected or measured load. Microservices are often deployed using containers using
technologies such as Docker7, which can be managed in clusters by other technolo-
gies such as Kubernetes8. This way, scaling can be done elastically: dynamically
according to the load. (Dragoni et al., 2018)

• Availibility and resilience to failure
While the methods used for scaling can improve performance and make it possible to
cope with a high load on a software system, the same methods can also be applied to
create redundancy and therefore resilience to failure. Also, because a defect in one
microservice does not lead to the crashing or malfunctioning of the entire system.
When errors do come forward, they are easier to locate in the narrow scope of the
microservice. Additionally, when upgrading a microservice, instances of the old and
new versions can run side by side, aiding in a smooth transition between them, and
less or no downtime. (Dragoni et al., 2017)

7 https://docker.com
8 https://kubernetes.io

https://docker.com
https://kubernetes.io

2.2 The evolution from monolithic to distributed architectures 31

• Better teams
The term “better” here is used in place of many different adjectives. Because
of the limited scope a microservice has, teams gain a deeper understanding of the
business domain, and feel a greater sense of ownership over the features they develop.
Combining this with the smaller codebases and shorter release cycles, teams tend to
get smaller and more productive (Newman, 2015).

Challenges and limitations of the microservice architecture

While lots of the benefits of the microservice architecture aid in enabling distributed
development, the architecture cannot be regarded as a silver bullet. In what follows, some
of the challenges of the microservice architecture are outlined, based in part on a literature
review by Soldani et al. (2018). Depending on the perspective of the reader, some of these
can also be considered to be drawbacks.

Partitioning the services tends to be a big challenge in the design phase of microservice
development. It is often difficult to slice up the business capabilities into well-defined
categories. Another challenge in the conceptual phase is establishing a clear strategy
for communication mechanisms: microservice intercommunication should have clear
contracts to ensure their compatibility.

During the development phase, because of the distributed nature of the microservice archi-
tecture, issues concerning data come up frequently. To ensure the necessary decoupling,
each microservice should have a dedicated data store or database. If there is data duplica-
tion, this can raise issues with data consistency. Operating with distributed data stores
also brings up the issue of distributed transactions: if one of the services fails to perform
a database operation, what will happen to the principle of a transaction?

Another challenge in the development phase is designing and writing adequate tests.
Because of their independent nature, unit tests are easier or in the worst case simply
unaffected by the microservice architecture. Performance testing, integration testing and
end-to-end testing, however, become more difficult because the system has to be tested
from the outside. Often multiple services have to be spun up to be able to do a test properly,
increasing the performance cost of the tests, and lowering their reliability.9

If the microservice-application is running, most of the challenges of the microservice archi-
tecture boil down to increased operational complexity: debugging, logging, monitoring,
service coordination, etc.

It is also worth noting that the microservice architecture requires a certain developer skill
and knowledge, that might not be readily available in a company or organization.

9 See also https://blog.indrek.io/articles/challenges-of-testing-microservices/

https://blog.indrek.io/articles/challenges-of-testing-microservices/

32 Chapter 2. State of the art

2.3 Microfrontends

With the introduction of the microservice architecture pattern, backend systems can be split
up into multiple services, each with their own responsibilities. As previously described,
this can bring great benefit. However, even after a transition to microservices on the
server-side, the client-side applications using these services are mostly still monolithic in
nature.

A monolithic frontend does not have to be a problem. Monoliths are quick and easy to
set up, and historically, most of the heavy lifting was done on the server-side anyway.
However, the complexity of client-side applications has seen a drastic increase over the last
few years. This can be attributed to many factors: increased hardware and web browser
capabilities, a wide variety of client devices, massive market growth for digital services,
and the web transitioning from a document platform to the largest application platform
(Ball, 2019); just to name a few.

In these complex applications, the downsides of a monolithic architecture come back into
view: every change requires the entire frontend application to be rebuilt and redeployed,
codebases grow very large in size, etc... Even worse, because the client-side application
has a functional dependency on the server-side application, a small change in one particular
area of the backend logic could also trigger a change in the frontend, causing the entire
frontend to yet again be rebuilt and redeployed (Rappl, 2019).

There is also the issue of domain knowledge: while the microservice architecture gives
backend teams the possibility of focussing on one specific part of a business domain, teams
that are developing the client-side code are still expected to know the entire scope of the
application. Often this means a reliance on personal inter-team communication, which in
larger organizations tends to be expensive (Geers, 2020).

While component-based paradigms introduced by libraries and frameworks (such as
React10, Angular11 and Vue12) can alleviate some of the complexity of the current frontend
systems, they still do not enable fully autonomous, decoupled, modular and/or distributed
development of large web applications.

2.3.1 What are microfrontends?

In 2016 the ThoughtWorks Technology Radar (ThoughtWorks, 2020) coined the term “Mi-
cro Frontends” to describe the split of the frontend monolith into independently deployable
and maintainable pieces. This new architecture pattern could therefore be regarded as an
extension of the microservice architecture into the frontend space.

The characteristics of the microfrontend architecture pattern are therefore very closely
related to those of the microservice architecture pattern, as described in section 6 (“Princi-
ples of the microservice architecture”). Every individual frontend module has a relatively

10 https://reactjs.org
11 https://angular.io
12 https://vuejs.org

https://reactjs.org
https://angular.io
https://vuejs.org

2.3 Microfrontends 33

Figure 2.4: A diagram showing an example of a microfrontend architecture.

small codebase, is focussed around one specific domain or company mission, and should be
modular, decoupled and independently developed; most optimally by autonomous teams.

A visual representation of the microfrontend architecture pattern is shown in Figure 2.4.

2.3.2 How do microfrontends enable distributed development?

A significant difference between microfrontends and other software architectures is the
impact on team structure and organizational shift (Geers, 2020). So, while microfrontends
have lots of technical aspects to consider, it is important to reflect on the organizational
aspects first.

As discussed in 2.2.3 (“Microservices”), when adopting the microservice architecture,
a shift has to be made to smaller independent teams around a specific business need.
However, this only brings about changes in the backend teams, while the frontend-oriented
development team will usually not follow suit. This keeps the overarching team structure
“horizontal”: divided per layer or technology.

One of the benefits of horizontal teams is that this structure enables experts focussing on
specific technologies to co-operate together as one team. This way, they can ensure a high
technical standard within the boundaries of their respective areas of expertise.

In geographically distributed teams, the consequence could be that these technical teams
operate from entirely different locations. According to Šmite et al. (2010), this can result

34 Chapter 2. State of the art

in compatibility issues between software layers and a less customer-focused development
model. Moreover, disputes can arise between the different teams because no team has full
responsibility for the delivery of any feature.

Feature teams

To mitigate the issues arising from geographically distributed horizontal teams; multidisci-
plinary or cross-functional “feature teams” can be introduced. These are grouped around a
specific business case or customer need. This “vertical slicing” enables teams to be more
independent and have end-to-end responsibility for the features they develop.

This feature team approach has multiple advantages: (Šmite et al., 2010)

• Optimized feature development
Focussing on features instead of technical details aids in delivering the highest
amount of business value.

• Decreased need for “expensive” communication
Communication within a team is usually faster and more informal than communi-
cations between teams, especially if teams are geographically distributed. Since a
feature can be developed by a single team, the need for expensive communication
decreases.

• Greater sense of developer involvement
According to (Larman & Vodde, 2008), developers who operate in a feature team
feel a greater sense of ownership and accountability for the features they develop.

It is worth mentioning that these benefits combined can result in a faster cycle time and
thus an increase in development speed (Geers, 2020).

On the other side, this approach also comes with caveats. One of them is the danger of
compromising on the conceptual integrity of the software systems. More time will have
to be spent up-front laying a solid foundation for conventions and standards. The effort
to then maintain the consistency of the software system is usually where the software
architect has a key role. In larger projects, a technical service team can be assembled to
provide technical coherence across different distributed systems (Šmite et al., 2010). While
this is something to consider, this also means an increased emphasis on better code quality
right from the start, which could prove very beneficial in the long term (Larman & Vodde,
2008).

Another caveat is that, especially in large corporations, changing the complicated organi-
zational structure might not be possible, or at the very least slow and difficult.

2.3.3 Common implementation patterns

As is the case with lots of architectural patterns, there are many ways of implementation
possible. With the microfrontend architecture, this is also the case. Various options differ
in complexity, goal, and mechanism.

Microfrontends often need to be composed to be able to reach a coherent application.

2.3 Microfrontends 35

Every Microfrontend brings its own pages. Often, microfrontends also expose reusable
components to be rendered in a variety of locations, to provide functionality. These are
often called fragments.

Below some of the possible implementation and composition techniques are outlined.

The web approach

The most straightforward way of leveraging the microfrontend architecture pattern is by
not using any integration technique at all. Instead, there can be opted for mechanisms that
exist in the world of the web.

As described by Rappl (2021), the web approach’s main mechanism for microfrontend
reference is by way of their Uniform Resource Locator (URL). Hyperlinks can be used to
let the user navigate between different microfrontends. This, however, compromises on
user experience and usability. With this approach, for example, elements from multiple
microfrontends cannot be rendered on the same page.

To enable visual composition of microfrontends in the most straightforward way, iframes
can be used. By using an <iframe> tag with a src attribute that points to a URL, one
could embed visual components of one microfrontend (fragments) within another, without
sacrificing on strong isolation between the two (Geers, 2020). The disadvantage here is the
notoriously bad characteristics of iframes. One of these is bad performance: according to
Souders (2013), iframes are up to 2 orders of magnitude more expensive to create than any
other Document Object Model (DOM) element. Moreover, iframes also block the loading
process of the rest of the page. Other suboptimal characteristics include accessibility and
search engine optimization (SEO).

The simplicity of the web approach is also where it lacks applicability for larger projects.
One of the biggest reasons to implement microservices and microfrontends is scalability,
which the web approach is often not very suitable for.

Server-side composition

To accommodate for scalability and ensure higher performance, the composition of the
microfrontends can be done before even reaching the end user’s web browser. This will
require dynamically composing the application on the server-side.

According to Geers (2020), this server-side composition can also provide a solid basis to
be able to enable progressive enhancement, and is a big advantage for SEO.

There are multiple techniques to enable server-side composition. These include, but are
not limited to:

• Server-Side Includes (SSI).
This uses an SSI directive (a HTML comment) to signify a placeholder for fragments
to be rendered into.

<!-- #include virtual="/fragment" -->

36 Chapter 2. State of the art

It also supports the execution of commands from the server, and even some condi-
tional logic (Apache, 2013). SSI has been around for a long time, this way most web
servers have support for it. Because its directives are HTML comments, using these
on a server that is not configured for SSI won’t crash the application (the fragment
will just simply not be rendered).

• Edge-Side Includes (ESI).
Instead of HTML comments, ESI uses XML-based ESI tags:

<esi:include src="/fragment"
alt="/fallback"
onerror="continue" />

ESI has a more extensive amount of functionalities (error handling, fallbacks, ...)
compared to SSI. It is however more difficult to implement, because while SSI can
work for nearly all web servers, ESI requires more specialized set-ups that are more
complex to configure (Rappl, 2021).

Client-side composition

While with server-side composition, a web server was used as an aggregation layer for
integrating the microfrontends; with client-side composition, the goal is to put this responsi-
bility onto the end user’s browser itself. The browser will have to render one parent HTML
document which contains the instructions to integrate all the individual microfrontends
into itself.

This parent HTML document is often called the application shell (Geers, 2020)(Rappl,
2021).

The microfrontend scripts and resources are often served from a Content Delivery Net-
work (CDN).

Client-side composition can be done in various different ways. A selection is outlined
below:

• Web Components
According to Mozilla (2021b), this term encompasses three main technologies,
namely custom elements, shadow DOM (that can provide reusable DOM trees to
ensure isolation) and HTML templates.

• Single-page application (SPA) composition
In recent years, client-side frameworks have become the staple of fast and app-like
experiences on the web. Most of these frameworks introduce a custom client-side
routing solution. When using SPA composition, the application shell needs to
take responsibility for the routing. The application shell will now not just render
fragments using HTML, but execute scripts defined in the microfrontends themselves
to be able to integrate them.

Client-side composition is great for delivering highly interactive, dynamic web applications.
However, because the application is not served to the browser in full, the downsides include
suboptimal SEO and an increased time to first load.

2.3 Microfrontends 37

Universal composition

Aiming to combine the client-side and server-side composition approaches, and get the
advantage of both, a hybrid approach can be achieved. Universal – or isomorphic –
composition describes the process of

1. composing the application on the server-side, providing a fast initial load and thus
enabling progressive enhancement and optimal SEO

2. hydrating the application so it becomes fully client-side interactive, providing the
benefits of a highly dynamic application.

2.3.4 Usage of microfrontends

Microfrontends are being used by companies all over the world. Swedish furniture company
IKEA mainly uses autonomous vertical teams that can develop in different technologies
if necessary (Stenberg, 2018). Spotify, a music streaming service provider from that
same country, uses iframe-based microfrontends within its desktop application to be able
to develop different parts from the same view independently. These so-called Spotlets
are developed by Squads, independent cross-functional teams (Gall, 2018). German e-
commerce fashion retailer Zalando even created “Project Mosaic”13, which contains a
plethora of libraries and services to create both frontend and backend microservices.

2.3.5 Benefits of microfrontends

The microfrontend architecture carries over a lot of the advantages of the microservice
architecture (Jackson, 2019): technology independence is now also possible across
different frontend teams, allowing them to select the best tools and frameworks for the
job. Loose coupling enables the scalibility of both the frontend and backend. Now, the
frontend can also enjoy the benefits of independent deploys, isolated risks, and smaller
codebases.

Teams also benefit greatly and can be reorganized to even greater benefit, as was discussed
in detail in section 2.3.2 (“Feature teams”).

These factors can have great results for a business. Due to their loose coupling, isolated
features, and independent deployments, microfrontends can have vastly different release
cycles, and iteration and feature development is usually faster because the teams don’t
have to wait for each other (Geers, 2020). Rappl (2021), because there is an existing com-
position mechanism, different microfrontends can be served to different users, enabling the
introduction of A/B testing without significant changes in the microfrontends themselves.

13 https://www.mosaic9.org/

https://www.mosaic9.org/

38 Chapter 2. State of the art

2.3.6 Downsides and challenges of microfrontends

However, the microfrontend architecture does come with a significant amount of tradeoffs
that need to be considered.

To cite Cam Jackson (2019):

“There are no free lunches when it comes to software architecture - everything
comes with a cost.”

Organizational complexity might be one of the biggest downsides of the microfrontend
approach. This makes microfrontends harder to recommend to small development teams
and companies. Domain decoposition is often difficult and relies on a lot of organizational
and technical factors.

Operational complexity also increases: debugging, logging, monitoring... all get a lot
more complicated. Communication between the different microfrontends is generally also
way more complex. If the microfrontend solution introduces the need for an application
shell, this needs to be closely managed since it introduces a new single point of failure.

Lastly, lots of challenges are inherited from the microservice architecture, as described in
“Challenges and limitations of the microservice architecture”.

2.4 Blazor WebAssembly

On the 6th of February 2018, Daniel Roth – Program Manager on the ASP.NET team at
Microsoft – released a blog post called A new experiment: Browser-based web apps with
.NET and Blazor. In this post, Roth (2018) announces an experimental project from the
ASP.NET team: a component-oriënted web UI framework based on C#, .NET, HTML and
so-called Razor pages.

The promise that was outlined by this post was a way to enable developers to write web
applications using .NET technologies, rather than resorting to Javascript14, the primary
scripting language used on the web.

Executing .NET binaries within a web browser is made possible by WebAssembly15,
a binary instruction format. WebAssembly has been added to the World Wide Web
Consortium (W3C) recommendation list, and has become the fourth language to run
natively in web browsers, alongside HTML, CSS and Javascript (Couriol, 2019).

An overview of how Blazor works is provided in Figure 2.5.

Rather than transpiling every .NET assembly to WebAssembly, or relying on plugins, Bla-
zor just relies on a .NET runtime that can run inside the browser sandbox, just like regular
Javascript does. The current implementation of Blazor uses the WebAssembly-compiled

14 Javascript is an implementation of the ECMAScript specification. Read more on https://ecma-
international.org/tc39

15 https://webassembly.org/

https://ecma-international.org/tc39
https://ecma-international.org/tc39
https://webassembly.org/

2.4 Blazor WebAssembly 39

Figure 2.5: A diagram that outlines how Blazor WebAssembly works. The C# code and Razor files get
compiled into IL assemblies, and run on a WebAssembly version of the Mono platform – a .NET runtime –
inside the browser sandbox.

version of the Mono16 platform – an open source .NET runtime – as an intermediate
language (IL) interpreter to execute managed code at runtime.

Because of this, applications can leverage all standard web technologies like websockets,
the DOM, and all other browser APIs, via Javascript interoperability (JS interop). It
also ensures the various security protections put in place by the sandbox environment to
prevent malicious client-side attacks.

2.4.1 Current state of Blazor and microfrontends

According to Rappl (2020), an easy and effective way to make distributed development
possible in a Blazor WebAssembly project, is simply to use separately distributed com-
ponent libraries. In Blazor – and in the .NET ecosystem in general – NuGet17 is the
standardized way of library distribution. One could create an application shell which
imports and incorporates these NuGet packages. While this implementation pattern makes
development relatively straightforward, it has its downsides.

Because the integration happens at build-time; any change requires full recompilation of
the entire application. Also, upon startup, the application shell has to have full knowledge
of all libraries, and they all have to be loaded for the application to work, which makes this
approach suboptimal regarding scalability. This integration method re-introduces coupling,
and is generally discouraged (Jackson, 2019).

Integrating Blazor components in a JavaScript-based app shell is another option. While
this has been done succesfully18, and there are already some frameworks that support

16 https://mono-project.com/
17 https://www.nuget.org
18 See an example here: https://github.com/lauchacarro/MicroFrontend-Blazor-React

https://mono-project.com/
https://www.nuget.org
https://github.com/lauchacarro/MicroFrontend-Blazor-React

40 Chapter 2. State of the art

this idea19, it is not within the scope of this thesis, as the focus is on an almost exclusive
.NET-approach.

Challenges and potential solutions

When looking for an approach that can dynamically load assemblies at runtime, the
client-side routing starts to present a problem. When defining a page component in
Blazor, the @page directive can be used. This will later provide the generated class with a
RouteAttribute with a value that indicates the component’s desired route template. The
standard Blazor router will then use reflection on the specified AppAssembly to scan the
loaded assemblies for these RouteAttributes (Sainty, 2019). This starts to become an
issue if the assemblies are dynamically loaded – and thus not present upon compilation.

Another challenge that can present itself is debugging. When running Blazor DLLs on a
WebAssembly runtime, a mechanism is needed to provide the link between the browser
and the debugging tools: the debugging proxy. According to Abdalla (2020), this is a
separate process that gets launched to load so-called program database (PDB) files. These
are also called symbol files, and they are the link between the debugger and the source code
(Microsoft, 2021). Loading the microfrontend symbol files dynamically is a challenge
that would need to be overcome to allow the debugging of Blazor applications using
microfrontends.

These are challenges that would not come up when the composition would be done at
build-time like with component libraries. Luckily, the .NET 5 version of Blazor introduces
lazy-loading capabilities out of the box20, so most of these challenges that come from the
dynamic loading requirement can most likely be overcome. According to Kdouh (2020),
the Blazor router component, for example, now supports passing it additional assemblies
to consider. For debugging, the AssemblyLoadContext can support the dynamic loading
of dependencies with their symbols (Microsoft, 2019).

19 For example the Piral microfrontend framework with their piral-blazor converter. See https://piral.io
20 https://docs.microsoft.com/en-us/aspnet/core/blazor/webassembly-lazy- load-assemblies

https://piral.io
https://docs.microsoft.com/en-us/aspnet/core/blazor/webassembly-lazy- load-assemblies

3. Methodology

The conducted research within this thesis can be subdivided into 2 parts, as to accommodate
the research objective:

• A theoretical study
• A proof of concept

3.1 Theoretical study

To be able to answer the research questions, a theoretical study was conducted in 4 phases:

Phase 1: Investigating what distributed development entails, and what benefits and
challenges it brings within a company context.

Phase 2: Providing an overview of how the microfrontend architecture pattern came
to fruition historically, and laying out the key differences with other more
monolithic architectures.

Phase 3: Exploring characteristics, implementation patterns, benefits, challenges and
best practices of the microfrontend architecture pattern.

Phase 4: Investigating the usage of the microfrontend architecture pattern in a Blazor
WebAssembly project, and also looking at the possible challenges and their
probable solutions.

42 Chapter 3. Methodology

The existing literature was scoured in the form of academic papers, conferences, books,
blog posts and talks from renowned technology evangelists, etc...

The results of this theoretical study were incorporated into Chapter 2 (“State of the art”).

3.2 Proof of concept

To be able to answer the research objectives, a proof-of-concept application was created
using various online and offline resources to aid in the conceptualization and development
process. These resources included academic papers, books and blog posts; as well as video
presentations and conference talks. Even open-source code found on GitHub1 was used to
find good solutions for the problems at hand.

Some of these concepts were tested separately in a small “dummy” application before
being incorporated into the main solution, to ensure their robustness.

The development process and results of the proof-of-concept application can be found in
Chapter 4 (“Proof of concept”).

1 Code sources include the ASP.NET Core repo found on https://github.com/dotnet/aspnetcore and the
Piral.Blazor repo found on https://github.com/smapiot/Piral.Blazor

https://github.com/dotnet/aspnetcore
https://github.com/smapiot/Piral.Blazor

4. Proof of concept

In this chapter, a proof-of-concept solution around a specific business case is created to
demonstrate the practical use of the microfrontend architecture pattern.

As was made apparent in section 2.3.3 (“Common implementation patterns”), there are
several different ways of conceptualizing and creating microfrontend solutions. This proof
of concept (PoC) will focus on universal composition, to be able to enable progressive
enhancement of the resulting web application. The desired solution ideally uses an
exclusive .NET approach (i.e. using exclusively technologies within the .NET ecosystem),
and has run-time integration with dynamic (lazy) loading capabilities.

4.1 Domain

4.1.1 Description

This PoC is centered around an e-commerce domain. To make the business case more
specific and tangible, the case was formulated as follows:

The creation of a web application for an online store dedicated to selling
tabletop games (board games, card games, ...).

This encompasses the following functionalities:

• Browse games
• View game details
• Order games

This domain was chosen because the technical needs of e-commerce solutions tend to

44 Chapter 4. Proof of concept

overlap with the set-out desired characteristics of the proof-of-concept application. In a
real-world scenario, the reverse process would be necessary, and one would have to pick
the best suiting implementation pattern for the case at hand.

The universal rendering will make sure the application has a faster initial load and better
SEO than a purely client-side rendered application, while maintaining a highly dynamic
nature.

4.1.2 Decomposition into microfrontends

According to Rappl (2021), the domain decomposition strategy is a crucial foundation
for determining the architecture of the microfrontend solution. In a real company context,
both technical and organizational factors need to be considered to be able to split up the
domain. For this PoC, the following modules were chosen:

• The Discover microfrontend, containing the product overviews and product details.
• The Order microfrontend, containing everything necessary for ordering products.

4.2 Architecture

Using the domain decomposition results, the overall architecture of the solution can be
determined. An overview is given in Figure 4.1. It mainly consists of 3 parts:

• The Discover microfrontend
• The Order microfrontend
• The application shell where these microfrontends will get integrated into.

4.2.1 Composition structure

A visual overview for the component and page composition for the PoC application is
shown in Figure 4.2. Pages are registered on a certain route and fragments are registered
into a slot (with a unique name) in another microfrontend or the application shell.

4.3 Development 45

Figure 4.1: The architecture overview for the proof-of-concept solution. In the microfrontends, only the
frontend has been implemented in the PoC, while the other elements were mocked using in-memory solutions
for demonstration purposes.

A summary of the components each microfrontend exposes is shown below:

Discover microfrontend:

Pages
– GameDetails with route /game?id={id}

Fragments
– GameOverview for slot homepage

Order microfrontend:

Pages
– CartOverview with route /cart
– OrderConfirmation with route /orderconfirmation

Fragments
– AddToCartButton for slot game-actions
– CartLink for slot top-row-items

4.3 Development

In what follows, more information about the development of the PoC solution will be
given. This explanation is accompanied by code that can be found at

https://github.com/DanteDeRuwe/bachelor-thesis-code.

https://github.com/DanteDeRuwe/bachelor-thesis-code

46 Chapter 4. Proof of concept

Figure
4.2:A

visualoverview
forthe

com
ponentand

page
com

position
forthe

PoC
application.T

he
colored

dashed
lines

indicate
the

sources
ofthe

com
ponents

(blue
for

“O
rder”

m
icrofrontend,orange

for“D
iscover”).

4.3 Development 47

4.3.1 Preparation

An ASP.NET hosted Blazor WebAssembly project was created. This can be done via the
.NET Command Line Interface (CLI):

$ dotnet new blazorwasm --hosted

This solution will serve as the application shell of the microfrontend application. It consists
of a client and a server part.

Next, pre-rendering was enabled in the application shell, using a strategy outlined in a blog
post by Jon Hilton 1.

4.3.2 Process and results

The framework library

To be able to dynamically integrate the microfrontends into the application shell at runtime,
it is useful to create a baseline framework with various utilities and reusable components.

This is the goal of the MicrofrontendFramework.Blazor2 project. It has the following
functionalities:

• Fragment rendering: the framework exposes a [Fragment] attribute to register a
component as a fragment with a custom name. It then also exposes a <Fragment/>
component that is used from the application shell or other microfrontends to render
a fragment by name.

• Routing: the framework exposes a <DynamicRouter/> component that can be
used instead of the default Blazor router to render the corresponding component
dynamically

• Component registration and dependency injection (DI): This functionality is exposed
as via an extension method called AddMicroFrontends that, given a collection of
loaded assemblies, can extract a collection of all components, and register this collec-
tion onto the DI container. It also will register the services that these microfrontends
need onto the provided service collection.3

The application shell

The main responsibility of the application shell is to compose the microfrontend compo-
nents and integrate the microfrontends into itself. This includes executing the functionali-
ties present in the framework library such as routing and fragment rendering. Before it
can make use of the AddMicroFrontends extension method, it should dynamically load
the microfrontend assemblies to be able to pass these as an argument.

1 https://jonhilton.net/blazor-wasm-prerendering/
2 https://github.com/DanteDeRuwe/bachelor-thesis-code/tree/main/src/framework/MicrofrontendFramework.Blazor
3 It does this by looking up a Microfrontend class in the microfrontend and reflectively calling its

Configure method. See MicrofrontendFramework.Blazor/Extensions.cs:30-39

https://jonhilton.net/blazor-wasm-prerendering/
https://github.com/DanteDeRuwe/bachelor-thesis-code/tree/main/src/framework/MicrofrontendFramework.Blazor
https://github.com/DanteDeRuwe/bachelor-thesis-code/blob/main/src/framework/MicrofrontendFramework.Blazor/Extensions.cs#L30-L39

48 Chapter 4. Proof of concept

On the server-side, as by way of proof of concept, the application shell fetches the
microfrontend assemblies from disk, acting as an ad hoc CDN. The server then also
exposes the file paths via a RESTful API.4 From the client-side, the file paths are fetched
via an HTTP call to the server API, and the files themselves are then fetched via their
paths.

The assemblies are stored in dynamic-link library (DLL) files. To also enable the debugging
of the microfrontends, another type of file is also needed: the PDB files. As mentioned
before, these are also called symbol files, and they are the link between the debugger and
the source code (Microsoft, 2021).

On both the server and the client side, each assembly and symbol definition can be loaded
in memory using the default AssemblyLoadContext:

AssemblyLoadContext.Default.LoadFromStream(dllStream, pdbStream);

This will allow the debugger to communicate with the browser at runtime, and makes
sure the standard debugging experience that Blazor developers expect will work on this
microfrontend solution.

Once the assemblies are loaded, they can be passed on to the aforementioned AddMicroFrontends
extension method originating from the framework project.

Next to fragment rendering, dynamic loading, and routing, the application shell also has
responsibility for some shared capabilities such as navigation, and basic layout.

The microfrontends

In this PoC solution, every microfrontend is just a Razor class library exposing a certain
set of pages and fragments. An overview of these exposed elements was shown in
4.2.1 (“Composition structure”). These exposed components are then picked up by the
application shell (using the framework library) for integration.

Each microfrontend is also an independent owner of its own data. They are not strongly
coupled to the application shell in any way, and only use the framework library to be able
to expose fragments and use placeholder slots for for the application shell to integrate other
fragments into.

4 In a real-world scenario, these responsibilities would probably be assigned to a dedicated service.

5. Discussion

The microfrontend architecture can provide development teams with significant benefits if
they are willing to accept the drawbacks and combat the challenges that go along with its
implementation.

The modular character of this architecture pattern can, in theory, be one of the most
effective ways to achieve loosely coupled end-to-end services (“from database to UI”),
which can be developed and managed by autonomous cross-functional teams. This can
enable development teams to be (geographically) distributed. Another benefit of operating
autonomously is the reduced waiting time and faster release cycles for the individual
modules.

However, this organizational shift might not be easy or even possible in some cases.
Especially in smaller companies, the advantages and disadvantages should carefully be
weighed.

On the technical side, creating a solid microfrontend solution has its challenges too. Creat-
ing a robust application all starts with a good conceptual and architectural baseline. This is
no different when applying the microfrontend architecture to the Blazor WebAssembly
technology. To be able to achieve very loose coupling of the different modules, a dynamic
loading strategy of the needed assemblies can be necessary. This introduces the challenges
of routing and fragment rendering, both of which were addressed by the proof-of-concept
solution found in Chapter 4 (“Proof of concept”).

Creating a real-world microfrontend solution within the .NET ecosystem using Blazor
WebAssembly is possible, but like everything, can be improved. Further research and
experimental work can be done on providing a way to enable every microfrontend to bring
its own dependencies and static files, while still ensuring isolation and performance, and
avoiding runtime conflicts. Also research in how to develop the microfrontends separately

50 Chapter 5. Discussion

from the full application shell can be helpful. One way of potentially achieving this is to
bundle up the application shell into some kind of emulator to enable local development.
This would also enable the local debugging of these microfrontends without the need for
the full application shell.

Without much doubt, the future versions of Blazor will bring more possibilities to solve
the problems and challenges that come up when developing microfrontends with Blazor.
Performance keeps improving, and new ways of dynamic loading and server-side rendering
are being introduced.

While some form of microfrontends have made their introduction in large companies
recently, the architecture pattern is just slowly breaking into the mainstream development
community. It will be interesting to see what solutions and frameworks will come up to
make the development of these modular applications easier than ever before.

A. Proposal

This bachelor thesis is based on a bachelor thesis proposal that was evaluated by the
promotor beforehand. The proposal can be found in the appendix below.

Enabling the Distributed Development of
Blazor-Based Web Applications Using a
Microfrontend Architecture
Bachelor Thesis Proposal 2020-2021

Dante De Ruwe1

Abstract
With the WebAssembly (WASM) standard a new set of web applications have been made possible. Within
the .NET ecosystem, the most popular solution for generating WebAssembly applications is called Blazor.
This framework allows building interactive web UIs using C# instead of JavaScript. One challenge in this
approach is that there is no direct way of enabling distributed development. While component libraries can
be created independently, knowledge in the main application would be required for integration. Using a
microfrontend architecture this relationship could be inversed. This thesis investigates what is needed to
empower the distributed development of large-scale Blazor-based web applications, tackling the individual
challenges that go along with this on its way. To gain insight into the domain, a theoretical study will be
conducted in 3 phases. Ultimately, a proof-of-concept solution will be created to demonstrate the use of a
microfrontend architecture in a Blazor environment with an almost exclusive .NET-approach. The prediction is
that this should be feasible, but well-thought-out compromises will have to be made regarding the limitations
of the current state of the Blazor framework and WebAssembly standard. As the adoption of the Blazor
framework and the microfrontend architecture pattern will mature, this thesis could be a valuable resource for
.NET-focussed development teams creating large-scale full-stack web applications.

Keywords
Web Development – Software Architecture – Distributed Development – Microfrontends – Blazor –
WebAssembly – .NET – C#

Co-promoter
Dr. Florian Rappl2 (Solution Architect at smapiot GmbH)

Contact: 1dantederuwe@gmail.com; 2florian.rappl@smapiot.com

Contents

1 Introduction 1

2 State-of-the-art 2
2.1 Distributed Development 2
2.2 Why Microfrontends? . 2
2.3 Composing and Integrating Microfrontends 2
2.4 Blazor WebAssembly . 2

3 Methodology 3
3.1 Theoretical study . 3
3.2 Proof of concept . 3

4 Expected Results 3

5 Expected Conclusions 3

References 3

1. Introduction
The development of applications for the web has seen some
dramatic shifts over the years. Apart from new technolo-
gies, protocols and standards, the way web applications are
structured has undergone some evolutions as well. “Soft-
ware architecture” not only outlines the pure structure of

the application, but also defines the responsibility of all the
pieces of the application, and how these pieces ought to
interact with each other (Fedorov et al., 1998).

In the “early days” of web development, nearly all applica-
tions had a monolithic architecture: a single-tier architec-
ture, where the user interface (UI), business logic and data
storage are all managed in a single all-in-one solution. Now,
developer teams have mostly adopted split-stack develop-
ment, where the UI is handled in the so-called “frontend”
and the business and data logic are dealt with by a “back-
end” system. This reduced coupling enabled specialized
teams to develop each aspect individually, independently
and therefore simultaneously (Dunkley, 2016). For the same
reasons, microservices started making an appearance when
developers realized that having a single backend service
could also be considered a monolithic approach (Fowler &
Lewis, 2014).

In 2016 the ThoughtWorks Technology Radar (Thought-
Works, 2020) coined the term “Micro Frontends” to describe
the split of the frontend monolith into independently deploy-
able and maintainable pieces. This is especially beneficial
for large-scale projects, where the division of developers

52 Appendix A. Proposal

Enabling the Distributed Development of Blazor-Based Web Applications Using a Microfrontend Architecture

in autonomous teams is quite common. However, enabling
distributed development of these microfrontends is not a
trivial undertaking, and naturally has its challenges.

This thesis aims to be an application of the microfrontends
architecture pattern, to enable distributed development of
large-scale web applications. More specifically, this the-
sis will focus on the Blazor1 web framework that uses
WebAssembly2 to execute C#3 code in the browser.

The research questions that will be addressed:

RQ1 What is needed to be able to independently develop
and deploy microfrontends using Blazor WASM?

RQ2 How to render Blazor-based microfrontends with the
proper isolation, performance and with progressive
enhancement4 in mind?

RQ3 What are the challenges that need to be overcome,
and how would one do so?

RQ4 How can development teams benefit from the transfor-
mation of their Blazor monolith into a microfrontend
solution?

Additionally, an objective of this thesis is to generate an
open-source proof-of-concept Blazor web application that
implements the microfrontend architecture pattern.

2. State-of-the-art
2.1 Distributed Development
As software projects grow larger and larger in size, natu-
rally more developers are needed to maintain them. But the
efficiency of teams does not scale linearly. This is a wisdom
that dates back to the very early days of software devel-
opment, as proven by the still applicable quote by Brooks
(1975): “adding manpower to a late software project makes
it later”.
A solution to this is obviously to subdivide the project into
chunks, managed by specialized teams. A company could
even let these teams operate from different geographical
locations. This is called “distributed development”. While
there are major benefits; this significantly increases the need
for extensive coordination and communication between the
teams, as well as a good company structure and strategy.
Making this possible all starts with the choice of a good com-
mon architecture that is scalable and supports distributed
development (Yuhong, 2008).

2.2 Why Microfrontends?
As outlined in the introduction to this proposal, there is an
already widespread practice of splitting up projects “hori-
zontally” per layer or technology. It makes sure that experts
can co-operate together as one team and ensure a high tech-
nical standard within the boundaries of their respective areas
of expertise.

But what if a company wants to put its focus on user experi-
ence, innovation and features, instead of purely on creating

1https://blazor.net
2https://webassembly.org
3http://csharp.net
4https://wikipedia.org/wiki/Progressive enhancement

the most technically perfect solution? This is where multi-
disciplinary or cross-functional “feature teams” can come
in. These are grouped around a specific business case or
customer need. This “vertical slicing” has major benefits:
it enables teams to be completely independent and have
end-to-end responsibility for the features they develop. This
aids in accelerating development speed, cutting down on
inter-team communication and enabling developers to feel
a greater sense of involvement in the project or product
(Larman & Vodde, 2008).

The “microfrontends” architecture gives developers the
necessary tools to be able to organize themselves into au-
tonomous “feature teams”, where each team has a company
mission they specialize in. (Geers, 2020)

2.3 Composing and Integrating Microfrontends
Implementing the microfrontend architecture pattern can be
done in various ways. This proposal will not mention all
of them, nor will it provide a detailed look at any of these
techniques. However, below some common methodologies
are outlined. (Geers, 2020) (Peltonen et al., 2020) (Pavlenko
et al., 2020)

• The web approach (hyperlinks, iframes...)
• Server-side rendering
• Client-side rendering
• Universal rendering

This thesis will focus on universal (also known as isomor-
phic) rendering. This is a rendering technique that aims
to combine client-side and server-side rendering practices.
The main concept is pre-rendering the application on the
server, resulting in a relatively fast initial load, and then
(re)hydrating the pre-rendered application on the client side
to make it fully client-side interactive. This enables progres-
sive enhancement. (Miller & Osmani, 2019)

2.4 Blazor WebAssembly
According to Rappl (2020b), an easy and effective way to
make distributed development possible in a Blazor WebAssembly
project, is simply to use separately distributed component
libraries. In Blazor – and in the .NET ecosystem in general –
NuGet5 is the standardized way of library distribution. One
could create one overarching web app which imports and
incorporates these NuGet packages. This is often called the
app shell (Geers, 2020). While this implementation pattern
makes development relatively straight-forward, it has its
downsides. Because the integration happens at build-time;
any change requires full recompilation of the entire appli-
cation. Also, upon startup, all libraries have to be loaded,
which makes this approach sub-optimal regarding scalabil-
ity. This integration method re-introduces coupling, and is
generally discouraged (Jackson, 2019).

Integrating Blazor components in a JavaScript based app
shell is another option. While this has been done succes-
fully6, this is not within the scope of this thesis, as the focus
is on an almost exclusive .NET-approach.
5https://www.nuget.org
6See an example here: https://github.com/lauchacarro/MicroFrontend-
Blazor-React

Bachelor Thesis Proposal 2020-2021 2/4

53

Enabling the Distributed Development of Blazor-Based Web Applications Using a Microfrontend Architecture

The desired solution, in contrast to the aforementioned ap-
proaches, uses “C#.NET all the way” if possible, and has
run-time integration with dynamic (lazy) loading capabili-
ties. In this, the challenges may come because of the Blazor
Intermediate Language (IL) trimming, which removes un-
used code and libraries in the output assemblies (Latham,
2020). Luckily, .NET 5 introduces lazy loading capabilities
for Blazor out of the box 7 (Kdouh, 2020) (Rappl, 2020a),
yet it is unclear if this is the cure-all solution.

It bears repeating that progressive enhancement is desired.
The combination of these requirements will be achieved
by using universal rendering, but with the focus on the
server-side.

3. Methodology

3.1 Theoretical study
To be able to answer the research questions, a theoretical
study will be conducted in 3 phases:

• Phase 1: Providing an overview of the microfrontend
architecture and the key differences with a monolithic
architecture.

• Phase 2: Exploring implementation patterns, chal-
lenges and best practices of the microfrontends pat-
tern in a Blazor WebAssembly project.

• Phase 3: Investigating the benefits and drawbacks of
using the microfrontends architecture with the goal
of enabling distributed development in a company
context.

3.2 Proof of concept
With the gained insight of the literature and the theoret-
ical study, a proof-of-concept solution around a realistic
business case will be created to demonstrate the practical
application of the microfrontends architecture pattern in a
Blazor WebAssembly project. Ideally, this proof of concept
will be made open-source.

4. Expected Results
The expected results of the theoretical study are relatively
straightforward. In phase 1, further insight will be gained
into the microfrontend architecture pattern. Phase 2 is
predicted to provide valuable knowledge for the eventual
proof-of-concept solution. In particular, the challenges that
will undoubtedly come up in this phase, will be important
considerations. Some expected challenges include debug-
ging, assembly sharing, dynamic loading in combination
with IL trimming (≈ tree shaking), etc... With the results of
research phase 3, insight can be gained into the cost-benefit
balance of the microfrontends approach; and indicate when
and for whom it is appropriate.

The proof of concept should be feasible to create, but well-
thought-out compromises will have to be made regarding
the limitations of the current state of the Blazor framework
and WebAssembly standard.

7https://docs.microsoft.com/en-us/aspnet/core/blazor/webassembly-lazy-
load-assemblies

5. Expected Conclusions
The distributed development of Blazor-based web appli-
cations, using the microfrontends pattern, with an almost
exclusive .NET-approach should be possible. Because of
the complexity of integration, this is only beneficial to large
teams, or teams that expect scaling. Judging by the limited
maturity of Blazor and the application of the microfrontends
pattern within this tech stack, this thesis could provide one
of the first realistic business cases within this specific area.

References
Brooks, F. P. (1975). The mythical man-month. Addison-

Wesley Publishing Company.
Dunkley, W. (2016, June 7). Split stack development: A

model for modern applications. Retrieved Novem-
ber 30, 2020, from https://medium.com/@Future
Friendly/split-stack-development-a-model-for-

modern-applications-d7b9abb47bd5
Fedorov, A., Francis, B., Harrison, R., Murphy, S., Smith,

R., Sussman, D., & Wood, S. (1998). Professional
active server pages 2.0. Wrox Press. Retrieved
November 30, 2020, from https://docs.microsoft.
com/en-us/previous-versions/office/developer/
server-technologies/aa480455(v=msdn.10)

Fowler, M., & Lewis, J. (2014, March 25). Microservices.
Retrieved November 30, 2020, from https://martinfowler.
com/articles/microservices.html

Geers, M. (2020). Micro frontends in action. Manning Pub-
lications.

Jackson, C. (2019, June 19). Micro frontends. Retrieved
November 30, 2020, from https:/ /martinfowler.
com/articles/micro-frontends.html

Kdouh, W. (2020, December 23). Microfrontends with blazor
webassembly. Retrieved December 26, 2020, from
https://medium.com/@waelkdouh/microfrontends-
with-blazor-webassembly-b25e4ba3f325

Larman, C., & Vodde, B. (2008). Feature teams. Scaling
lean & agile development: Thinking and organiza-
tional tools for large-scale scrum (pp. 150–192).
Addison-Wesley Professional.

Latham, L. (2020, May 19). Configure the linker for asp.net
core blazor. Retrieved December 24, 2020, from
https://docs.microsoft.com/en-us/aspnet/core/
blazor/host-and-deploy/configure-linker?view=
aspnetcore-3.1

Miller, J., & Osmani, A. (2019). Rendering on the web. Re-
trieved December 15, 2020, from https://developers.
google.com/web/updates/2019/02/rendering-on-
the-web#rehydration

Pavlenko, A., Askarbekuly, N., Megha, S., & Mazzara, M.
(2020). Micro-frontends: Application of microser-
vices to web front-ends. https://doi.org/10.22667/
JISIS.2020.05.31.049

Peltonen, S., Mezzalira, L., & Taibi, D. (2020). Motivations,
benefits, and issues for adopting micro-frontends:
A multivocal literature review. Retrieved Decem-
ber 15, 2020, from https: / /arxiv.org/pdf/2007.
00293.pdf

Bachelor Thesis Proposal 2020-2021 3/4

54 Appendix A. Proposal

Enabling the Distributed Development of Blazor-Based Web Applications Using a Microfrontend Architecture

Rappl, F. (2020a, November 12). Microfrontends with blazor:
Welcome to the party! (.NET Conf 2020). Retrieved
November 28, 2020, from https://youtu.be/npff2NjVXEE

Rappl, F. (2020b, May 20). Microfrontends with blazor:
Welcome to the party! (München .NET Meetup
2020). Retrieved December 16, 2020, from https:
//youtu.be/IGVQoCzCtR4

ThoughtWorks. (2020). Micro frontends technology radar.
Retrieved November 30, 2020, from https://thoughtworks.
com/radar/techniques/micro-frontends

Yuhong, Y. (2008). Geographically distributed development
: Trends, challenges and best practices. Retrieved
December 1, 2020, from https://dspace.mit.edu/
bitstream/handle/1721.1/42373/234383465-MIT.
pdf

Bachelor Thesis Proposal 2020-2021 4/4

55

Bibliography

Aarsten, A., Brugali, D., & Menga, G. (1996). Patterns for three-tier client/server applica-
tions. Proceedings of Pattern Languages of Programs (PLoP’96), 4.

Abdalla, S. (2020, November 10). Under the hood with debugging in blazor webassembly.
Retrieved August 21, 2021, from http://blog.safia.rocks/blazor-wasm-debugging

Apache. (2013). Retrieved August 20, 2021, from http://httpd.apache.org/docs/current/
howto/ssi.html

Avraham, S. B. (2017, September 5). What is rest — a simple explanation for beginners,
part 1: Introduction. Retrieved August 26, 2021, from https : / / medium . com /
extend/what- is-rest-a-simple-explanation-for-beginners-part-1-introduction-
b4a072f8740f

Ball, K. (2019, January 30). The increasing nature of frontend complexity. Retrieved April
17, 2021, from https://blog.logrocket.com/the-increasing-nature-of-frontend-
complexity-b73c784c09ae/

Carmel, E., Espinosa, J. A., & Dubinsky, Y. (2010). "follow the sun" workflow in global soft-
ware development. Journal of Management Information Systems, 27(1), 17–38. http:
//fs2.american.edu/alberto/www/papers/JMIS_2010_CarmelEspinosaDubinski_
FollowTheSun.pdf

Conchúir, E. Ó., Ågerfalk, P. J., Olsson, H. H., & Fitzgerald, B. (2009). Global software
development: Where are the benefits? Communications of the ACM, 52(8), 127–
131.

Couriol, B. (2019, December 6). Webassembly 1.0 becomes a w3c recommendation and
the fourth language to run natively in browsers. Retrieved May 1, 2021, from
https://www.infoq.com/news/2019/12/webassembly-w3c-recommendation/

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., &
Safina, L. (2017). Microservices: Yesterday, today, and tomorrow. Present and

http://blog.safia.rocks/blazor-wasm-debugging
http://httpd.apache.org/docs/current/howto/ssi.html
http://httpd.apache.org/docs/current/howto/ssi.html
https://medium.com/extend/what-is-rest-a-simple-explanation-for-beginners-part-1-introduction-b4a072f8740f
https://medium.com/extend/what-is-rest-a-simple-explanation-for-beginners-part-1-introduction-b4a072f8740f
https://medium.com/extend/what-is-rest-a-simple-explanation-for-beginners-part-1-introduction-b4a072f8740f
https://blog.logrocket.com/the-increasing-nature-of-frontend-complexity-b73c784c09ae/
https://blog.logrocket.com/the-increasing-nature-of-frontend-complexity-b73c784c09ae/
http://fs2.american.edu/alberto/www/papers/JMIS_2010_CarmelEspinosaDubinski_FollowTheSun.pdf
http://fs2.american.edu/alberto/www/papers/JMIS_2010_CarmelEspinosaDubinski_FollowTheSun.pdf
http://fs2.american.edu/alberto/www/papers/JMIS_2010_CarmelEspinosaDubinski_FollowTheSun.pdf
https://www.infoq.com/news/2019/12/webassembly-w3c-recommendation/

58 BIBLIOGRAPHY

ulterior software engineering (pp. 195–216). Springer International Publishing.
https://doi.org/10.1007/978-3-319-67425-4_12

Dragoni, N., Lanese, I., Larsen, S. T., Mazzara, M., Mustafin, R., & Safina, L. (2018). Mi-
croservices: How to make your application scale. In A. K. Petrenko & A. Voronkov
(Eds.), Perspectives of system informatics (pp. 95–104). Springer International
Publishing. https://doi.org/https://doi.org/10.1007/978-3-319-74313-4_8

Dunkley, W. (2016, June 7). Split stack development: A model for modern applications.
Retrieved November 30, 2020, from https://medium.com/@Future__Friendly/split-
stack-development-a-model-for-modern-applications-d7b9abb47bd5

Education, I. C. (2021). Soa. Retrieved August 26, 2021, from https://www.ibm.com/
cloud/learn/soa

Evans, E. (2004). Domain-driven design: Tackling complexity in the heart of software.
Addison-Wesley Professional.

Fedorov, A., Francis, B., Harrison, R., Murphy, S., Smith, R., Sussman, D., & Wood, S.
(1998). Professional active server pages 2.0. Wrox Press.

Fenton, S. (2012). Compiling vs transpiling. Retrieved August 26, 2021, from https :
//www.stevefenton.co.uk/2012/11/compiling-vs-transpiling/

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee, T.
(1999). Hypertext transfer protocol – HTTP/1.1 (tech. rep.). RFC Editor. https:
//doi.org/10.17487/rfc2616

Fowler, M., & Lewis, J. (2014, March 25). Microservices. Retrieved November 30, 2020,
from https://martinfowler.com/articles/microservices.html

Gall, R. (2018, July 19). Spotify has “one of the most intricate uses of javascript in
the world,” says former engineer | packt hub. Retrieved August 20, 2021, from
https : / /hub.packtpub.com/spotify- has- one- of - the- most - intricate - uses- of -
javascript-in-the-world-says-former-engineer/

Gallaugher, J. M., & Ramanathan, S. C. (1996). Choosing a client/server architecture. Infor-
mation Systems Management, 13(2), 7–13. https://doi.org/10.1080/10580539608906981

Geers, M. (2020). Micro frontends in action. Manning Publications.
Gysels, N. (2020). Hoe implementeert men een ecosysteem van microservices bij appli-

catieontwikkeling? https://catalogus.hogent.be/catalog/hog01:000733123
Jackson, C. (2019, June 19). Micro frontends. Retrieved November 30, 2020, from https:

//martinfowler.com/articles/micro-frontends.html
Kdouh, W. (2020, December 23). Microfrontends with blazor webassembly. Retrieved

December 26, 2020, from https://medium.com/@waelkdouh/microfrontends-with-
blazor-webassembly-b25e4ba3f325

Kiel, L. (2003). Experiences in distributed development: A case study. Proceedings of
International Workshop on Global Software Development, 44–47. http://www.
gsd2003.cs.uvic.ca/gsd2003proceedings.pdf#page=46

Koren, I., & Klamma, R. (2018). The exploitation of openapi documentation for the
generation of web frontends. Companion Proceedings of the The Web Conference
2018, 781–787. https://doi.org/10.1145/3184558.3188740

Larman, C., & Vodde, B. (2008). Feature teams. Scaling lean & agile development:
Thinking and organizational tools for large-scale scrum (pp. 150–192). Addison-
Wesley Professional.

https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/https://doi.org/10.1007/978-3-319-74313-4_8
https://medium.com/@Future__Friendly/split-stack-development-a-model-for-modern-applications-d7b9abb47bd5
https://medium.com/@Future__Friendly/split-stack-development-a-model-for-modern-applications-d7b9abb47bd5
https://www.ibm.com/cloud/learn/soa
https://www.ibm.com/cloud/learn/soa
https://www.stevefenton.co.uk/2012/11/compiling-vs-transpiling/
https://www.stevefenton.co.uk/2012/11/compiling-vs-transpiling/
https://doi.org/10.17487/rfc2616
https://doi.org/10.17487/rfc2616
https://martinfowler.com/articles/microservices.html
https://hub.packtpub.com/spotify-has-one-of-the-most-intricate-uses-of-javascript-in-the-world-says-former-engineer/
https://hub.packtpub.com/spotify-has-one-of-the-most-intricate-uses-of-javascript-in-the-world-says-former-engineer/
https://doi.org/10.1080/10580539608906981
https://catalogus.hogent.be/catalog/hog01:000733123
https://martinfowler.com/articles/micro-frontends.html
https://martinfowler.com/articles/micro-frontends.html
https://medium.com/@waelkdouh/microfrontends-with-blazor-webassembly-b25e4ba3f325
https://medium.com/@waelkdouh/microfrontends-with-blazor-webassembly-b25e4ba3f325
http://www.gsd2003.cs.uvic.ca/gsd2003proceedings.pdf#page=46
http://www.gsd2003.cs.uvic.ca/gsd2003proceedings.pdf#page=46
https://doi.org/10.1145/3184558.3188740

BIBLIOGRAPHY 59

Leff, A., & Rayfield, J. T. (2001). Web-application development using the model/view/con-
troller design pattern. Proceedings Fifth IEEE International Enterprise Distributed
Object Computing Conference, 118–127. https://doi.org/10.1109/EDOC.2001.
950428

Microsoft. (2016, June 20). What is managed code? Retrieved August 26, 2021, from
https://docs.microsoft.com/en-us/dotnet/standard/managed-code#intermediate-
language--execution

Microsoft. (2018, May 9). What is a content delivery network (cdn)? - azure. Retrieved
August 26, 2021, from https://docs.microsoft.com/en-us/azure/cdn/cdn-overview

Microsoft. (2019, August 9). Understanding assemblyloadcontext - .net core. Retrieved
August 21, 2021, from https://docs.microsoft.com/en-us/dotnet/core/dependency-
loading/understanding-assemblyloadcontext#how-does-assemblyloadcontext-
support-dynamic-dependencies

Microsoft. (2021, March 31). Set symbol (.pdb) and source files in the debugger - visual
studio (windows). Retrieved August 18, 2021, from https://docs.microsoft.com/en-
us/visualstudio/debugger/specify- symbol- dot- pdb- and- source- files- in- the-
visual-studio-debugger?view=vs-2019

Mozilla. (2021a). Retrieved August 26, 2021, from https://developer.mozilla.org/en-
US/docs/Web/API/Document_Object_Model/Introduction

Mozilla. (2021b). Retrieved August 20, 2021, from https://developer.mozilla.org/en-
US/docs/Web/Web_Components

Newman, S. (2015). Building microservices: Designing fine-grained systems. " O’Reilly
Media, Inc."

NGINX. (2021). Api gateway. Retrieved August 26, 2021, from https://www.nginx.com/
learn/api-gateway/

Oshri, I., Kotlarsky, J., & Willcocks, L. P. (2015). The handbook of global outsourcing and
offshoring 3rd edition. Springer.

Pavlenko, A., Askarbekuly, N., Megha, S., & Mazzara, M. (2020). Micro-frontends:
Application of microservices to web front-ends. https://doi.org/10.22667/JISIS.
2020.05.31.049

Rappl, F. (2019, February 25). Taming the front-end monolith. Retrieved April 17, 2021,
from https://blog.logrocket.com/taming-the-front-end-monolith-dbaede402c39/

Rappl, F. (2020, May 20). Microfrontends with blazor: Welcome to the party! (München
.NET Meetup 2020). Retrieved December 16, 2020, from https : / / youtu . be /
IGVQoCzCtR4

Rappl, F. (2021). The art of micro frontends. Packt Publishing Ltd.
Reese, G., & Oram, A. (2000). Distributed application architecture. Database programming

with jdbc and java (pp. 126–145). O’Reilly. https : / / web . archive . org / web /
20110406121920/http://java.sun.com/developer/Books/jdbc/ch07.pdf

Roth, D. (2018, February 6). A new experiment: Browser-based web apps with .net and
blazor. Retrieved April 29, 2021, from https://devblogs.microsoft.com/aspnet/
blazor-experimental-project/

Sainty, C. (2019, October 22). Introduction to routing in blazor. Retrieved August 21,
2021, from https://chrissainty.com/introduction-to-routing-in-blazor/

Sengupta, B., Chandra, S., & Sinha, V. (2006). A research agenda for distributed software
development. Proceedings of the 28th international conference on Software engi-

https://doi.org/10.1109/EDOC.2001.950428
https://doi.org/10.1109/EDOC.2001.950428
https://docs.microsoft.com/en-us/dotnet/standard/managed-code#intermediate-language--execution
https://docs.microsoft.com/en-us/dotnet/standard/managed-code#intermediate-language--execution
https://docs.microsoft.com/en-us/azure/cdn/cdn-overview
https://docs.microsoft.com/en-us/dotnet/core/dependency-loading/understanding-assemblyloadcontext#how-does-assemblyloadcontext-support-dynamic-dependencies
https://docs.microsoft.com/en-us/dotnet/core/dependency-loading/understanding-assemblyloadcontext#how-does-assemblyloadcontext-support-dynamic-dependencies
https://docs.microsoft.com/en-us/dotnet/core/dependency-loading/understanding-assemblyloadcontext#how-does-assemblyloadcontext-support-dynamic-dependencies
https://docs.microsoft.com/en-us/visualstudio/debugger/specify-symbol-dot-pdb-and-source-files-in-the-visual-studio-debugger?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/debugger/specify-symbol-dot-pdb-and-source-files-in-the-visual-studio-debugger?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/debugger/specify-symbol-dot-pdb-and-source-files-in-the-visual-studio-debugger?view=vs-2019
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://www.nginx.com/learn/api-gateway/
https://www.nginx.com/learn/api-gateway/
https://doi.org/10.22667/JISIS.2020.05.31.049
https://doi.org/10.22667/JISIS.2020.05.31.049
https://blog.logrocket.com/taming-the-front-end-monolith-dbaede402c39/
https://youtu.be/IGVQoCzCtR4
https://youtu.be/IGVQoCzCtR4
https://web.archive.org/web/20110406121920/http://java.sun.com/developer/Books/jdbc/ch07.pdf
https://web.archive.org/web/20110406121920/http://java.sun.com/developer/Books/jdbc/ch07.pdf
https://devblogs.microsoft.com/aspnet/blazor-experimental-project/
https://devblogs.microsoft.com/aspnet/blazor-experimental-project/
https://chrissainty.com/introduction-to-routing-in-blazor/

60 BIBLIOGRAPHY

neering, 731–740. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.626.
5687&rep=rep1&type=pdf

Šmite, D., Moe, N. B., & Ågerfalk, P. J. (Eds.). (2010). Agility across time and space:
Implementing agile methods in global software projects. Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-12442-6

Soldani, J., Tamburri, D. A., & Van Den Heuvel, W.-J. (2018). The pains and gains
of microservices: A systematic grey literature review. Journal of Systems and
Software, 146, 215–232. https://doi.org/https://doi.org/10.1016/j.jss.2018.09.082

Souders, S. (2013). Retrieved August 9, 2021, from https://www.stevesouders.com/blog/
2009/06/03/using-iframes-sparingly/

Stenberg, J. (2018, August 7). Retrieved August 20, 2021, from https://www.infoq.com/
news/2018/08/experiences-micro-frontends/

Techopedia. (2012). Load balancer. Retrieved August 26, 2021, from https : / / www.
techopedia.com/definition/29118/load-balancer

ThoughtWorks. (2020). Micro frontends technology radar. Retrieved November 30, 2020,
from https://thoughtworks.com/radar/techniques/micro-frontends

W3.org. (2021). About w3c. Retrieved August 26, 2021, from https: / /www.w3.org/
Consortium/

Webassembly.org. (2021). Webassembly. Retrieved May 1, 2021, from https://webassembly.
org/

Yuhong, Y. (2008). Geographically distributed development : Trends, challenges and best
practices. Retrieved December 1, 2020, from https://dspace.mit.edu/bitstream/
handle/1721.1/42373/234383465-MIT.pdf

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.626.5687&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.626.5687&rep=rep1&type=pdf
https://doi.org/10.1007/978-3-642-12442-6
https://doi.org/https://doi.org/10.1016/j.jss.2018.09.082
https://www.stevesouders.com/blog/2009/06/03/using-iframes-sparingly/
https://www.stevesouders.com/blog/2009/06/03/using-iframes-sparingly/
https://www.infoq.com/news/2018/08/experiences-micro-frontends/
https://www.infoq.com/news/2018/08/experiences-micro-frontends/
https://www.techopedia.com/definition/29118/load-balancer
https://www.techopedia.com/definition/29118/load-balancer
https://thoughtworks.com/radar/techniques/micro-frontends
https://www.w3.org/Consortium/
https://www.w3.org/Consortium/
https://webassembly.org/
https://webassembly.org/
https://dspace.mit.edu/bitstream/handle/1721.1/42373/234383465-MIT.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/42373/234383465-MIT.pdf

	1 Introduction
	1.1 Problem Statement
	1.2 Research question
	1.3 Research objective
	1.4 Structure of this bachelor thesis

	2 State of the art
	2.1 Distributed development
	2.1.1 Benefits
	2.1.2 Challenges
	2.1.3 The role of the architecture in enabling distributed development

	2.2 The evolution from monolithic to distributed architectures
	2.2.1 Monolithic architecture
	2.2.2 The split-stack development model
	2.2.3 Microservices

	2.3 Microfrontends
	2.3.1 What are microfrontends?
	2.3.2 How do microfrontends enable distributed development?
	2.3.3 Common implementation patterns
	2.3.4 Usage of microfrontends
	2.3.5 Benefits of microfrontends
	2.3.6 Downsides and challenges of microfrontends

	2.4 Blazor WebAssembly
	2.4.1 Current state of Blazor and microfrontends

	3 Methodology
	3.1 Theoretical study
	3.2 Proof of concept

	4 Proof of concept
	4.1 Domain
	4.1.1 Description
	4.1.2 Decomposition into microfrontends

	4.2 Architecture
	4.2.1 Composition structure

	4.3 Development
	4.3.1 Preparation
	4.3.2 Process and results

	5 Discussion
	A Proposal
	Bibliography

